BHARATI VIDYAPEETH (DEEMED TO BE UNIVERSITY), PUNE, INDIA PhD Entrance Test – 2023 SECTION-II: Mechanical Engineering - 35 Marks

UNIT No	Topics covered	
UNIT-I	Probability & Statistics	
	Measures of Central Tendency, Mean, Median, Mode, Measures of Variation,	
	Range, Population Variance and Standard Deviation, Sample Variance and	
	Standard Deviation, Variance and Standard Deviation for Grouped Data,	
	Probability Distributions, Variance, Standard Deviation, and Expectation, The	
	Binomial Distribution, Poisson Distribution, Normal Distributions, The Standard	
	Normal Distribution. Practical examples based on these distributions.	
UNIT-II	Numerical Methods	
	<u>Roots of Equations</u> : Significant figures, Accuracy and Precision, Error definition,	
	Round-Off errors, Truncation error, Total numerical error. Bracketing methods-	
	Bisection and False position method. Open methods, Newton-Raphson method	
	Linear Algebraic Equation: Navie-Gauss elimination, pitfalls of Gauss Elimination,	
	techniques of improving solutions.	
	Numerical differentiation and Integration: Trapezoidal rule, Simson's rules,	
	integration with unequal segment, multiple integral, derivatives of unequally	
	spaced data	
	Ordinary Differential Equations: Euler's method, improvement of Euler's	
UNIT-III	method, Runge-Kutta method, system of equations.	
UN11-111	Manufacturing Engineering <u>Principles of metal cutting</u> : Mechanics of chip formation; Geometry of cutting	
	tools and tool signatures; Orthogonal and oblique cutting; Metal cutting models:	
	Merchant model, Lee-Shaffer model, Oxley model; Forces in metal cutting;	
	Tribology in metal cutting; Surface roughness in machining; Thermal aspects of	
	machining; Tool wear, tool life, tool materials, tool coatings and coating	
	techniques; Economics of machining; Machinability; Cutting fluids: properties,	
	types, application techniques.	
UNIT-IV	Thermal Engineering	
	Fluid Mechanics: The continuity equation, Stream function for uniform stream, two	
	dimensional flow past solid bodies, velocity functions. Limiting cases of small	
	viscosity, exact solution, theory of hydrodynamic lubrication.	
	Heat Transfer: Steady and transient Conduction, Principle of Fluid flow and	
	Convective heat transfer. Concept of velocity and thermal boundary layers,	
	Navier-Stokes equations and convection equation, Boundary layer	
	approximations.	
UNIT-V	Design Engineering	
	Vibration: Basic concepts, Free vibration of single degree of freedom systems	
	with and without damping, forced vibration of single DOF-systems, Natural	
	frequency, Transient Vibration of single Degree-of freedom systems.	
	Failure due to Fatigue: High cycle and low cycle fatigue, Fatigue design	
	models, Fatigue testing, Fatigue mechanisms, General S-N behavior, Factors	
	influencing S-N behavior, S-N curve representation and approximations,	
	Constant life diagrams, Fatigue life estimation using S-N approach, Modes of	
	mechanical failure, Review of failure theories for ductile and brittle materials	
1 ext Books	Text Books/References:	

1.	Allan G. Bluman, Elementary Statistics A Step by Step Approach, McGraw-Hill.
2.	Numerical methods for engineers / Steven C. Chapra, Raymond P. Canale
3.	G. Boothroyd and W. A. Knight, Fundamentals of Machining and Machine Tools, CRC-
	Taylor and Francis, 2006
4.	Fluid Mechanics. FM White. Boston: McGraw-Hill Book Company
5.	Fundamentals of Heat and Mass Transfer-5 th Ed. Frank P. Incropera. John Wiley
6.	Heat Transfer. J.P Holman McGraw-Hill Book Company
7.	Mechanical Vibration. G. K. Grover
8	Design of Machine Elements V. B. Bhandari

ж ж ж ж